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Key Points  

• Global 3" SRTM topography has been accurately converted to implied topographic gravity 

effects at ~28 billion locations over most land areas 

• 90 m detailed gravimetric terrain correction grid reflecting the gravitational attraction of 

Earth's topographic masses publicly available 

• New model directly applicable to reduce gravimetric surveys to Bouguer gravity over land 

areas between -60° and 85° geographical latitude 

Abstract  

We present a new global model of spherical gravimetric terrain corrections which take into account 

the gravitational attraction of Earth’s global topographic masses at 3” (~90 m) spatial resolution. The 

conversion of Shuttle Radar Topography Mission (SRTM)-based digital elevation data to implied 

gravity effects relies on the global evaluation of Newton’s law of gravitation, which represents a 

computational challenge for 3” global topography data. We tackled this task by combining spatial 

and spectral gravity forward modelling techniques at the 0.2 mGal accuracy level and used advanced 

computational resources in parallel to complete the 1 million CPU-hour-long computation within ~2 

months. Key outcome is a 3” map of topographic gravity effects reflecting the total gravitational 

attraction of Earth’s global topography at ~28 billion computation points. The data, freely available 

for use in science, teaching and industry, is immediately applicable as new in-situ terrain correction 

to reduce gravimetric surveys around the globe. 



Plain Language Summary  

Measurement and study of the gravitational force (the g-value) is essential for geoscientists 

concerned with, e.g., mineral prospection and investigation of Earth’s gravitational field.  Most 

applications require the analyst to remove the gravitational signal caused by the surrounding and 

remote terrain (mountains, valleys) from the g-value at the location of the measurement. This task 

involves tedious numerical computations when high-resolution terrain data sets, e.g., from the 

Shuttle Radar Topography Mission (SRTM) are used. Utilizing improved computational methods and 

1 million computation hours on a supercomputer, a globally 90 m-detailed map has been created 

that shows the subtle influence of the terrain on g-measurements at ~28 billion measurement sites 

around the globe. This first-of-its-kind map, released into the public domain, is expected to simplify 

the daily work of geoscientists in research and industry concerned with gravity interpretation and to 

clear the path for next-generation global gravity maps with extreme detail. 
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1. Introduction 

Gravity field observations are essential for investigating the structure of Earth’s gravitational field. 

The shape and anomalies of the gravity field carry important clues on the mass composition and 

geological evolution (e.g., Blakeley, 1996; Fowley, 2005).  Before a gravimetric survey can be 

interpreted for anomalous signals, the effect of the topographic masses on the gravity 

measurements must be calculated and reduced. This is also denoted topographic mass reduction 

(Jacoby & Smilde 2009) or gravimetric terrain correction (Li & Sideris, 1994; Featherstone & Kirby, 

2002). The gravity effect associated with the topographic masses is obtained through evaluation of 

Newton’s law of gravitation. While classical terrain corrections rely on approximations such as 

planarization and neglect of topographic masses beyond some fixed integration radius, e.g., 167 km 

(e.g., Hammer, 1939; Nowell, 1999), contemporary approaches are often based on more accurate 

spherical approximation and model all of Earth’s topographic masses around the globe and with 

increasingly higher resolution (e.g., Kuhn et al., 2009; Balmino et al., 2012).  The spatial resolution of 

terrain correction computations is important to better resolve and detect small-scale or near-surface 

mass-density anomalies, e.g., in the context of geophysical exploration. 

In modern terrain correction computations, detailed digital elevation models (DEM) are commonly 

used as representation of the topographic masses.  High-resolution gravimetric terrain correction 

grids have been computed over local (e.g., Tsoulis, 2001; Cella, 2015) and even continental areas 



(Featherstone & Kirby, 2002; Kuhn et al., 2009) at a resolution commensurate with the DEM (e.g.,  

~50 m to ~270 m). Global grids of gravimetric terrain corrections have been developed too, notably 

in the context of UNESCO’s World Gravity Map (WGM) project (Balmino et al., 2012; Bonvalot et al., 

2012). However, a ~2 to ~4 km resolution level - as in case of the WGM – is usually not sufficient to 

accurately reduce ground gravimetric observations that capture the gravitational attraction of the 

surrounding local masses too.  Thus far, a global map of highly-detailed gravimetric terrain 

corrections that would take into account the global topography to finest detail is not available. This 

might be related to the significant computational challenges encountered when attempting to 

evaluate Newton’s integral down to the DEM resolution globally (Hirt et al., 2013). 

Here we present the first ultra-high resolution model of gravimetric terrain corrections that uniquely 

unites local detail resolution with global coverage. We have converted global 90 m DEM data, 

primarily based on the Shuttle Radar Topography Mission (SRTM), to implied topographic gravity 

effects. The outcome, denoted SRTM2gravity, is a modern gravimetric terrain correction model that 

reflects the gravitational attraction of Earth’s global topographic masses at any of the ~28 billion 

computation points covering all of Earth’s land areas within -60° to 85° geographic latitude at 90 m 

resolution.  The SRTM2gravity model contains implicitly the effect of the Bouguer shell (the linear 

term) and all gravity terrain effects residual to the Bouguer shell (e.g., surrounding valleys, 

mountains). It therefore reflects the total gravity signal generated by the global topographic masses. 

The SRTM2gravity model relies on improved global DEM data representing the bare ground (Sect. 2) 

and a validated combination of mature spectral and spatial techniques for efficient evaluation of 

Newton’s integral (Sect. 3). We provide two products, one reflecting the total gravitational attraction 

of the global topography, and the other capturing the high-frequency topographic gravity signal only 

(Sect. 4.1). Application examples including the in-situ reduction of gravimetric surveys around the 

globe, and construction of extremely detailed gravity maps are given (Sect 4.2), limitations are 

summarized (Sect 4.3), and conclusions are drawn (Sect 5). 

2. Data 

Key input data is the 3 arc-second resolution global v1.0.1 MERIT (Multi-Error-Removed Improved-

Terrain) DEM (digital elevation model) data set by Yamazaki et al. (2017). The MERIT DEM primarily 

relies on SRTM (Shuttle Radar Topography Mission) version 2.1 data within ±60° latitude, and uses 

AW3D DEM data (ALOS/PRISM) North of 60° latitude. For the filling of SRTM voids (unobserved 

areas), DEM data collected and maintained by Viewfinder Panoramas was used. Together with a 

constant mass-density of 2670 kg m-3, MERIT is our representation for Earth’s topographic masses.  In 

contrast to other global DEM products, radar error sources (speckle noise, stripes and biases) as well 

as the tree canopy signal have been reduced in MERIT (see Yamazaki et al., 2017 for details). As a 



result, MERIT elevations represent – in good approximation – the bare ground, and thus improve the 

representation of topographic masses, which is an important conceptional benefit for the purpose of 

our work. The lower bound of the MERIT topography model is the geoid (mean sea level). 

In previous studies using earlier SRTM data releases (e.g., Hirt et al., 2014), the need to carefully 

inspect and correct the topography data for outliers prior to the forward modelling has become 

clear. For this study, efforts were therefore made to develop artefact screening techniques (Hirt 

2018) for detection of steps, spikes, pits and other unwanted features in the topography model. 

Based on the terrain gradient threshold of 5 m/m (i.e., a 5 m elevation change per 1 m horizontal 

distance), a total of 123 locations with elevation outliers were detected in the MERIT v1.0.1 data set 

and removed through interpolation (Hirt, 2018). Though the number of detected artefacts is 

comparatively small, we consider the DEM screening and artefact removal important, because 

elevation outliers may propagate into a wider region of surrounding gravity values. The cleaned 3” 

MERIT DEM is free of spurious artefacts and represents the detailed topographic mass model (Fig. 

1a) for the gravity forward modelling.  

SRTM2gravity uses the MERIT-DEM as only input data set, so does not include the topographic 

masses of Antarctica, nor the ice-density contrast of Greenland. These simplifications produce very 

long-wavelength signals on the order of few mGal over non-ice-covered areas (Kuhn & Hirt, 2016). A 

correction is possible, e.g., using forward models representing the ice-density effect of Greenland 

(Tenzer et al., 2010) and topography/ice masses of Antarctica (Rexer et al., 2016). The MERIT-DEM 

represents the surface of water bodies (oceans or lakes) and the surface of ice masses where 

present. Note that no attempt was made to model other mass-bodies or mass-density anomalies 

such as ocean or lake water or sediments.  Users having detailed models of such mass bodies at hand 

can forward-model and refine the terrain corrections from the SRTM2gravity model. 

3. Methods and computations 

The principal difficulty for global yet high-resolution terrain correction modelling is the 

computational effort associated with evaluation of Newton’s integral. The effort increases linearly 

with (i) the number of computation points, and (ii) the number of mass-elements the topography 

model is divided into.  At 90 m spatial resolution, the MERIT-DEM contains ~28 billion elevation 

points across all land areas within -60° and 85° latitude, requiring – in principle – 

 ~(28 ×  109)2P

 evaluations of single mass elements. Using cascading grid resolutions, starting from 

3” in the vicinity of the computation point to much coarser resolutions for remote topographic 

masses, is permitted to accelerate the computations (e.g. Forsberg, 1984), while keeping 

approximation errors small (e.g., Hirt & Kuhn, 2014). Nonetheless, with this optimized configuration 

(cf. Electronic Supplementary Materials ESM) the conversion of the entire MERIT-DEM to gravity 



effects would still require ~15 million CPU hours (CPUh) to obtain µGal level precision. Using much 

coarser grid resolutions would further reduce the computation time, however, at the expense of 

increasing approximation errors. 

An alternative highly-efficient strategy was developed, tested and applied for the SRTM2gravity 

challenge, considerably reducing the overall computation time to the level of ~1 million CPUh. Our 

computational approach (cf. ESM) combines spectral-domain and spatial-domain techniques for 

efficient evaluation of Newton’s integral. Key element of the combination technique is the use of a 

spherical harmonic (SH) reference topographic surface, which is here expanded up to degree 2,160. 

Under some approximations (cf. Rexer et al., 2018; Hirt et al., 2019, also see ESM Sect. S1 and S3), it 

facilitates the separate modelling of long-wavelength (here more than 10 km) and short-wavelength 

(less than 10 km) topographic gravity signals, based on the following procedure: 

1. The 3” MERIT topographic surface was accurately expanded into a set of SH coefficients to 

degree 2,160. We performed an ultra-high degree SH analysis up to degree 43,200 to 

mitigate downsampling errors on the estimated coefficients (Hirt et al., 2019). The reference 

surface is rigorously self-consistent with the 3”MERIT topographic surface. 

2. For modelling the long-wavelength gravity signal implied by the degree-2,160 SH topography, 

spectral-domain techniques as described in, e.g., Chao & Rubincam (1989), Hirt & Kuhn 

(2014) were used. These expand the topographic potential into integer powers of the 

topography, and gravity effects are subsequently obtained via accurate SH synthesis of the 

topographic potential coefficients at the 3” MERIT topographic surface (e.g., Hirt, 2012; 

Bucha & Janak, 2014).  

3. The MERIT-implied gravity signal residual to the degree-2,160 reference topography was 

computed in the spatial domain via local numerical integration. A residual terrain model 

(RTM; Forsberg, 1984) was formed as difference between the 3” MERIT and the reference 

topography, and converted to high-frequency gravity effects by evaluating Newton’s integral 

locally. For this task, the RTM was subdivided into primitive mass elements - polyhedra, 

prisms and tesseroids (e.g., Heck & Seitz, 2007; Tsoulis, 2012) - and the gravitational effect of 

each mass element was calculated and added up. Where 3” MERIT elevations were smaller 

than the reference topographic elevations, a harmonic correction was applied following the 

approach by Forsberg & Tscherning (1981). 

The total gravitational effect of the 3” MERIT topographic mass model is the sum of results from step 

2) and step 3). To improve the spectral separation between both components, and to be able to 

reach sub-mGal modelling accuracy, also very high-frequency signals generated by the degree-2,160 



topography at scales of ~10 km down to ~2 km were explicitly modelled and considered (Hirt et al., 

2016; Rexer et al., 2018), also see ESM (Sect. S1.3). 

As the main computational benefit of the adopted methodology, the RTM numerical integration 

could be restricted to a comparatively small ~40 km radius around the computation point without 

compromising the modelling quality (beyond the chosen integration radius, gravitational effects 

cancel out to a large extent because of the oscillating nature of the residual terrain). This has allowed 

a very significant reduction of the number of mass elements and the total computation time 

compared to more tedious global evaluations (radius of ~20,000 km) of Newton’s integral over the 3” 

MERIT DEM.  For the production of the SRTM2gravity model, the SuperMUC Phase 2 advanced 

computational resources of the Leibniz Rechenzentrum (LRZ) of the Bavarian Acadamy of Sciences 

and humanities could be used. This part of the LRZ supercomputer comprises 86,016 CPUs (type 

Haswell Xeon Processor E5-2697).  At ~28 billion computation points,  

• the spectral gravity forward modelling including synthesis of gravity effects at the 3D 

topographic surface required ~45,000 CPU-hours (4 %), and 

• the residual terrain modelling including the numerical integration within 40 km caps around 

each point required ~1,100,000 CPU-hours (96 % of total CPU time), 

showing that the majority of CPU-hours is consumed by the numerical integration, while the effort 

associated with spectral modelling of the long-wavelength reference signal tends to be negligible. 

Using up to 4,000 CPUs in parallel, the computations - which would have otherwise taken ~100 years 

on a single-core desktop computer - could be completed in 8 weeks (gross time). Compared to a truly 

global evaluation of Newton’s law of gravitation at 3” resolution, our spectral-spatial combination 

method has significantly reduced computation times. This comes at the expense of increased 

approximation errors over deeply carved mountain valleys, related to the approximate character of 

the harmonic correction in the RTM (cf. Sect 4.3 and ESM). Notwithstanding, a high precision of ~0.2 

mGal for the SRTM2gravity conversion could be reached globally (cf. Sect. 4.2). As an important 

conceptual benefit of the chosen method, a spectral separation between long- and short-wavelength 

topographic gravity signals is directly given, enhancing the applicability of the SRTM2gravity model, 

e.g., for augmentation of global gravitational models, such as EIGEN-6C4 (Förste et al., 2015) or 

EGM2008 (Pavlis et al. 2012). 

 

 

 



4. Results  

4.1 SRTM2gravity products and applications 

The first and primary outcome of the SRTM2gravity project is a 3” resolution global grid of 

gravimetric terrain corrections (Fig. 1b) which reflect the gravity signal produced Earth’s global 

topography (Fig. 1a), excluding the land masses of Antarctica and the Greenland ice-density contrast.  

 

Fig. 1. Top: Global topographic masses (elevations in m) modelled in SRTM2gravity, Bottom: topography-

implied full-scale gravity signal (in mGal) and model availability. Data shown at 1 arc-min resolution in both 

panels. 



It can be used as a modern kind of terrain correction to reduce the topographic gravitational effect in 

gravity measurements taken anywhere on Earth’s land areas with the exception of Antarctica.  The 

SRTM2gravity gravimetric terrain corrections have been calculated at 27,938,880,000 points. These 

extend over 19,402 1°x1° tiles covering Earth’s land areas between -60° and +85° latitude including 

coastal zones (Fig. 1a).  Over our data area, the gravimetric terrain corrections reach a total mean 

value of ~86.5 mGal. The variation range is from ~ -48.5 mGal (Torres del Paine, Chile) to ~825.3 

mGal (Mount Everest summit), cf. Fig. 1b. 

It is important to note that our gravimetric terrain corrections shown in Fig. 1b contain both the 

linear effect of the topography on gravity (also known as Bouguer shell) as well as the non-linear 

effect (classically denoted as terrain correction in textbooks); so are identical with the (full) 

gravitational signal generated by Earth’s global topography (Fig. 1a).The SRTM2gravity gravimetric 

terrain corrections can thus be directly subtracted from observed gravity disturbances, without the 

need to separately model Bouguer plate or shell effects, see Fig. 2 for examples. 

 

 

Fig. 2. Top row: Observed gravity, topographic gravity and (complete) Bouguer gravity anomalies over 
Switzerland; bottom row: the same but over Australia. The observations shown in panels a and d are g-values 
minus normal gravity, so technically gravity disturbances. The topographic gravity (panels b, e) has been 
interpolated from the SRTM2gravity model and represents a complete spherical terrain correction. Bouguer 
gravity (panels c, f) follows as difference between observation and topographic effect. Data courtesy 
Swisstopo, and Geoscience Australia. All units in mGal. 

As second outcome, we provide a 3” resolution global grid of residual gravity effects which 

represents high-frequency topographic gravity signals at scales from ~10 km down to ~90 m. This 



model component is the result of the RTM numerical integration procedure (Sect. 3) and also takes 

into account very short-scale signals generated by the degree-2,160 topography to improve the 

band-limitation of the residual gravity signals (cf. Rexer et al. 2018). Typical applications for the 

residual gravity effects are a) use in the context of remove-compute-restore geoid computations to 

smooth gravity anomalies prior to interpolation, and b) spectral enhancement of global geopotential 

models (e.g., EIGEN-6C4 or EGM2008) beyond the nominal ~10 km model resolution (e.g., Hirt et al., 

2013). The global RMS (root-mean-square) signal strength of the residual gravity effects is ~10.7 

mGal and maximum signal amplitudes often exceed ~100 to ~200 mGal over rugged terrain, e.g., the 

Himalaya Mountains. These values corroborate the significant signal amplitudes of topography-

implied gravity signals at short spatial scales. 

 

Fig. 3. Top row: Residuals between gravity observations and modelled gravity over the Australian Alps. Panel a: 
model = GGMplus, panel b: model = GGMplus with the short-scale component replaced by SRTM2gravity. The 
top row gives an example of smaller gravity residuals as result of using SRTM2gravity data. Bottom row: 
Comparison of the spatial detail modelled by GGMplus (Hirt et al. 2013, panel c) and SRTM2gravity (panel d) 
and their differences (panel e) over a 10x10 km area of the Australian Alps. The bottom row shows the short-
scale gravity model constituents and their differences (mGal) at spatial scales less than 10 km. With the 90 m 
resolution level (centre) many short scale terrain features are better represented in the gravimetric terrain 
corrections. 

 



Fig. 2 shows application examples for SRTM2gravity products. Using the Swiss national gravity data 

set, Fig. 2a shows free-air gravity values and Fig. 2b the new gravimetric terrain corrections, which 

have been interpolated and subtracted from the free-air gravity to yield complete spherical Bouguer 

anomalies (Fig 2c). These are predominantly negative, a typical sign for isostatic compensation of the 

topographic masses over the European Alps. Analogously, Fig. 2d-2f shows the observed, 

topographic and Bouguer gravity for Australia. 

The application of the SRTM2gravity residual component for the spectral enhancement of global 

geopotential models is exemplified in Fig. 3. Over a test area in the Australian Alps, Fig. 3a shows 

residuals between observed gravity and the GGMplus model (see Hirt et al., 2013), while in Fig. 3b 

the short-scale signals of GGMplus have been replaced with SRTM2gravity (see Table S5 from ESM 

for the statistics). The comparison often shows smaller residuals when SRTM2gravity is used, which is 

attributed here to the better spatial resolution of the forward modelling, to a reduction of canopy-

related non-gravity signals in the SRTM2gravity product, as well as to the improved spectral 

consistency of residual terrain modelling. Fig. 3c-d finally compares the short-scale component of 

GGMplus with SRTM2gravity, exemplifying the gain in resolution (from 220 m to 90 m), and thus 

improved representation of short-scale gravity signals. 

4.2 Validation and accuracy  

We have independently validated the SRTM2gravity model through a) global numerical integration 

and b) comparisons with ground-truth gravity data (cf. ESM).  

a) Over a total of six 2°x2° mountainous test areas around the globe (cf. ESM), global numerical 

integrations (= evaluation of Newton’s integral in the spatial domain with 180° numerical integration 

radius at 3” resolution in the vicinity of the computation point) were performed. These calculations 

provide reference values for the gravimetric terrain correction – without using spectral techniques, 

spherical harmonic reference surfaces or RTM gravity forward modelling methods – so offer an 

independent check of the modelling technique the SRTM2gravity products rely on (Sect. 3). The RMS 

differences between SRTM2gravity values and reference values from global numerical integration 

were found to be smaller than 0.8 mGal over all test areas, with the RMS values ranging from 0.1 

mGal (Australian Alps), 0.15 mGal (Indonesian Islands and South American Andes), ~0.5-0.6 mGal 

(European Alps and Canadian Rocky Mountains) to 0.75 mGal (Himalayas) as example for Earth’s 

most rugged areas. Maximum differences at individual field points never exceeded an amplitude of 

12.5 mGal over our test areas. For any area where topography is smoother than that of the 

Australian Alps (these are more than 90% of Earth’s land areas), ~0.1 mGal accuracy can be 

reasonably expected.  



These values are a measure for the computational accuracy, in that, they show the error level that 

can be attributed to our SRTM2gravity conversion technique described in Sect. 3.  SRTM2gravity 

values should be well reproducible within this error margin with any independent and accurate 

forward modelling technique. It is important to bear in mind that the error level of SRTM elevation 

data is ~5 m (e.g., Rodriguez et al. 2006), which translates into ~0.5 mGal in the gravity domain (using 

a simple Bouguer plate model). In rugged terrain, individual SRTM errors can exceed 100 meters (or 

~10 mGal). Relative to the impact of elevation errors on the terrain corrections, the SRTM2gravity 

computational error level will thus play only a minor role for the quality of the terrain corrections. 

b) We have utilized the GGMplus gravity maps which rely on SRTM-based forward modelling at 

spatial scales of ~10 km down to 250 m, and EGM2008 including GRACE/GOCE satellite gravity data 

at spatial scales down to 10 km. Ground-truth gravity was compared with two model variants, (1) 

GGMplus gravity (as released by Hirt et al., 2013), and (2) EGM2008, refined with GRACE/GOCE 

satellite gravity (as in Hirt et al. 2013) and augmented with the 90 m resolution SRTM2gravity short-

scale component. Over our test areas Bavaria, Switzerland, Australia and Slovakia, the ground-truth 

gravity data sets suggest a comparable or better agreement (mostly over mountainous regions) when 

the new SRTM2gravity model is used as source for short-scale gravity constituents (see Table S5 from 

ESM for the statistics). This outcome can be attributed to the higher spatial detail resolution (90 m 

instead of 220 m), the use of bare-ground elevations and refined forward modelling techniques (cf. 

Rexer et al., 2018). 

4.3 Limitations 

SRTM2gravity is a pure topography-implied gravity field model. Due to its very nature, it does not 

contain any observed gravity values. At short spatial scales, our model is an approximation of the real 

gravity field, but not an exact description of what can be measured with gravimetric techniques.  

While due attempts have been made to remove spurious artefacts from the topographic input model 

we cannot exclude the presence of further smaller artefacts in the topography data (e.g., steps or 

spikes with terrain gradients less than 5 m/m), and, in turn, in the forward-modelled gravity. 

SRTM2gravity models the topographic gravity effect only and relies on the constant mass-density 

assumption.  Mass-density anomalies (relative to the reference density of 2670 kg m-3) and the 

topographic masses of Antarctica have not been modelled. Examples of unmodelled density 

anomalies include, but are not limited to, the density contrasts associated with a) lake water, b) 

ocean water, c) ice sheets and d) sediments. Users with mass density models at hand can forward 

model and improve the SRTM2gravity terrain correction grids.  The mentioned restrictions especially 

apply to Greenland and to coastlines around the world. An extension of the modelling to Antarctica 



and the inclusion of ice-sheets, ocean and lake bathymetry in detailed 3” resolution forward 

modelling is desirable and considered an important future task. 

Over extremely narrow and deep mountain valleys (e.g., 2 km height difference w.r.t. surrounding 

summits), SRTM2gravity approximation errors will be largest. This is a consequence of the harmonic 

correction approach applied in the RTM gravity forward modelling. Approximation errors can reach 

few mGal up to ~12 mGal for km-deep narrowly-carved mountain valleys, as encountered e.g., in 

parts of the Himalayas, Rocky Mountains or European Alps. This effect, included in the RMS accuracy 

estimates in Sect. 4.2, will decrease for wider valleys and less rugged topography. 

5. Discussion and conclusions 

SRTM2gravity is the first successful attempt to transform global 3” elevation data to implied gravity 

effects at ~28 billion computation points covering all of Earth’s land areas within -60° to 85° 

geographic latitude, and to release the grids into the public domain for free use. SRTM2gravity is 

based on an efficient computational methodology (Sect. 3) that was applied in a globally consistent 

manner on a supercomputing facility. 

The main product is a 3” global grid of gravimetric terrain corrections that is immediately applicable 

to reduce the topographic signal in detailed gravimetric surveys. It contains the gravity effect of the 

Bouguer shell and that of the terrain irregularities around the globe in a single product. As such, 

complete Bouguer gravity anomalies as a modern kind of Bouguer gravity are obtained (e.g., Kuhn et 

al. 2009). Different to classical planar approaches that often use ~167 km integration zones (e.g.,  

Leaman, 1998; Nowell, 1999; Fowler, 2005; Torge & Müller, 2012; Pasteka et al., 2017), our new 

gravimetric terrain corrections take into account the gravitational attraction of the topographic 

masses around the globe in spherical approximation. As a result, the topography-implied gravity 

effect is modelled much more completely and realistically. 

The SRTM2gravity project can be thought of a logical continuation of the Kuhn et al. (2009) study 

that presented gravimetric terrain corrections over Australia at ~270 m resolution based on global 

numerical integration. Different to Kuhn et al. (2009), our model covers all land areas (apart from 

Antarctica), while now achieving ~90 m point density, being a standard resolution for contemporary 

global DEM data sets. Compared to Balmino et al. (2012) who have globally modelled gravimetric 

terrain corrections with spectral techniques at ~2 km resolution, our new 90 m SRTM2gravity grids 

provide a more than 20-fold improvement in detail resolution, allowing to capture gravity signals 

induced by local topography too. Given the sensitivity of gravity measurements for near topographic 

masses, the 90 m SRTM2gravity resolution may be crucial to improve the spectral consistency with 

measured ground gravity. On the other hand, in favour of Balmino et al. (2012) is that their maps are 



not restricted solely to land areas and a single constant mass density, as done in this study, but take 

into account also density contrasts associated with bathymetry, lakes and ice caps. 

SRTM2gravity is related to the GGMplus gravity maps (Hirt et al., 2013). Similarly to GGMplus, short-

scale gravity signals have been modelled at scales less than ~10 km using DEM data and numerical 

integration techniques. SRTM2gravity, however, offers higher detail resolution (3” instead of 7.2” as 

in case of GGMplus), and uses improved data and modelling methods. Data improvements include a) 

reduced radar errors and removal of canopy signals in the DEM (Yamazaki et al., 2017), b) artefact 

screening and removal (Hirt, 2018) and c) coverage of high Northern latitudes (Yamazaki et al., 2017), 

while methodological improvements concern a more rigorous short-scale forward modelling (Hirt et 

al., 2019) and improved spectral consistency (Rexer et al., 2018). GGMplus primarily contained 

measured gravity data (via EGM08, GOCE and GRACE) at scales larger than 10 km, whereas the 

SRTM2gravity model depends on topographic data at all spatial scales. As such, GGMplus was never a 

model of (complete) gravimetric terrain corrections, as it is now the case with SRTM2gravity. 

SRTM2gravity represents a new milestone for ultra-high resolution global gravity modelling 

combining global scope with local detail.  In the context of the new 30 m NASA-DEM, an increase in 

spatial resolution to the 1” level for future gravity products is foreseeable. This will further reduce 

very short-scale signal omission errors in future terrain correction products. On the other hand, 

modelling of gravity signals associated with ice and water masses at highest possible resolution is 

considered important future work; issues such as outliers and inconsistencies between land 

topography and ocean bathymetry in coastal zones (Hirt et al., 2014) will need to be carefully 

addressed in such future endeavours. 
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General 

SRTM2gravity is a freely-available global model of gravimetric terrain corrections at 3“ spatial 
resolution. The gravimetric terrain corrections reflect the gravity effect of Earth’s global topographic 
masses, as represented through the MERIT digital elevation model together with the constant mass-
density 𝜌𝜌 = 2670 kg m-3.  They include both the gravity effect of a spherical Bouguer shell and that of 
the terrain irregularities (e.g., valleys, summits) around the globe in a single, readily-usable data set. 
SRTM2gravity values facilitate a simple procedure for the compilation of Bouguer gravity maps: Our 
pre-computed data set can be interpolated and directly subtracted from measured gravity 
disturbances (differences between g-values and normal gravity) to remove the topographic signal 
from a gravity survey. This yields Bouguer gravity anomalies, without the need to further evaluate 
terrain correction integrals through tedious numerical integrations. 

The purpose of these electronic supplementary materials (ESM) is to provide details on the 
methodology used to calculate terrain corrections from the elevation data (Sect. S1). Because the 
fundamental aspects of gravity forward modelling techniques are very well documented in the 
literature (e.g., Forsberg and Tscherning 1981, Chao and Rubincam 1989, Jacoby and Smilde 2009, 
Balmino et al. 2012, Hirt and Kuhn 2014, Hirt et al. 2016), we attempt to provide the specific details 
that we consider important to understand the challenges faced and solved, and to enable users to 
replicate the calculations. We briefly outline how supercomputing resources facilitated the modelling 
(Sect. S2), present details on the validation experiments carried out to check the correctness of the 
methodology, and determine the SRTM2gravity approximation error level over different topographic 
settings (Sect. S3). Comparisons with ground-truth data sets provide additional validation (Sect. S4). 

S1. Details on the methodology 

This work uses gravity forward modelling (GFM) techniques to compute the gravity field implied by 
Earth's topographic masses. The key input quantity for GFM in general and terrain correction 
computations in particular is a high-resolution topographic mass model that is defined by a detailed 
grid of topographic heights, together with a mass-density value 𝜌𝜌. In our case, topographic heights 
were taken from the MERIT-DEM (Multi-Error-Removed Improved-Terrain DEM) data set by 
Yamazaki et al. (2017) that relies primarily on data from the Shuttle Radar Topography Mission 
(SRTM). The MERIT-DEM represents the upper bound and the geoid (or mean sea level) the lower 
bound of the topographic mass distribution which is shown in Fig. 1a of the manuscript. In our work 
we use a constant mass-density value 𝜌𝜌 = 2670 kg m-3 which is a commonly used standard value for 
gravimetric terrain corrections in geophysics and geodesy (e.g., Fowler 2005, Jacoby and Smilde 



2009, Torge and Müller 2012). The topography model is used in spherical approximation, i.e. with the 
heights 𝐻𝐻 referring to an Earth reference sphere with some reference radius 𝑅𝑅. 

The gravimetric terrain correction 𝛿𝛿𝛿𝛿𝐻𝐻 is the gravity effect implied by the MERIT topographic mass 
model with the computation points residing at the surface of the MERIT topography (i.e., as 
approximation of Earth’s surface where gravity measurements can be taken). The quantity 𝛿𝛿𝛿𝛿𝐻𝐻 is 
technically the first negative radial derivative of the topography-implied gravitational potential. It can 
be obtained via global evaluation of Newton’s law of gravitation that reads in spherical 
approximation in integral form (after Heck and Seitz 2007) 

𝛿𝛿𝛿𝛿𝐻𝐻(𝑟𝑟,𝜑𝜑, 𝜆𝜆) =  𝐺𝐺𝜌𝜌 � � �
𝑟𝑟𝑄𝑄2(𝑟𝑟 − 𝑟𝑟𝑄𝑄  cos𝜓𝜓)

𝑙𝑙3

𝑅𝑅+𝐻𝐻

𝑟𝑟𝑄𝑄=𝑅𝑅

2𝜋𝜋

𝛼𝛼=0

𝑑𝑑𝑟𝑟𝑄𝑄 𝑑𝑑𝛼𝛼 sin𝜓𝜓

𝜓𝜓0=𝜋𝜋

𝜓𝜓=0

𝑑𝑑𝜓𝜓 (1) 

Where 𝐺𝐺 is the universal gravitational constant, (𝐻𝐻, 𝜌𝜌) is the topographic mass model, and (𝑟𝑟,𝜑𝜑, 𝜆𝜆) 
are the radius and the geographical coordinates (spherical latitude and longitude) of the 
computation point 𝑃𝑃. Variables (𝑟𝑟𝑄𝑄 ,𝜑𝜑𝑄𝑄 ,𝜆𝜆𝑄𝑄) are the radius and the geographical coordinates of the 
integration points 𝑄𝑄, and variables (𝜓𝜓, 𝛼𝛼) are the spherical distance and azimuth between 𝑃𝑃 and 𝑄𝑄 
which are separated by the Euclidian distance 𝑙𝑙. Quantity 𝜓𝜓0 denotes the radius of the integration 
cap, with 𝜓𝜓0 = 𝜋𝜋 required for global integrations.  In our work, we use 𝑅𝑅 = 6378,137.0 m, 𝐺𝐺 =
6.67384x10-11 m3 kg-1 s-2 and 𝜌𝜌 = 2670 kg m-3.  

Because of the enormous computational effort associated with evaluation of Eq. (1) at 3” spatial 
resolution through numerical integration (see details in Sect. 3), we split the integral into two 
components 

𝛿𝛿𝛿𝛿𝐻𝐻 = 𝛿𝛿𝛿𝛿𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅𝑅𝑅 (2) 
 

which can be evaluated much more efficiently compared to Eq. (1). In Eq. (2), 

𝛿𝛿𝛿𝛿𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅  is the gravity signal generated by the long-wavelength constituents of the 
topography model, computed in our work with spectral-domain GFM techniques, and 

𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅𝑅𝑅 is the gravity signal generated by the short-wavelength constituents of the 
topography model, obtained through the residual terrain modelling (RTM) technique that 
relies on numerical integration in the spatial domain.  

The combination technique (Eq. 2) confers very significant savings in computation time, primarily 
because the tedious numerical integration over the global topography in Eq. (1) is replaced (in a 
reasonable approximation) by a more efficient numerical integration within local integration caps. 
However, apart from the approximation due to the cap integration, the separation into two 
constituents in Eq. (2) must be considered as approximative, given the nonlinear relation between 
the topographic heights and the implied gravity. Nevertheless, after introducing correction terms, we 
keep the errors at least below the mGal-level (RMS) as will be shown later in the validation against an 
independent technique that avoids this separation (Sect. S3). 

S1.1 Spherical harmonic reference topography 

For the separation of long- and short-wavelength constituents of the topography model, a spherical 
harmonic (SH) expansion of the reference topography  
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 (3) 

is introduced, where  𝑌𝑌�𝑛𝑛𝑛𝑛(𝜑𝜑, 𝜆𝜆) are the fully-normalized surface SH functions of degree 𝑛𝑛 and order 
𝑚𝑚, 𝐻𝐻�𝑛𝑛𝑛𝑛 are the fully normalized SH coefficients of degree 𝑛𝑛 and order 𝑚𝑚,  degree 𝑁𝑁 is the maximum 
degree of the SH expansion and 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅(𝜑𝜑, 𝜆𝜆) are the synthesized topographic heights. The SH 
coefficients 𝐻𝐻�𝑛𝑛𝑛𝑛 were obtained via global spherical harmonic analysis (SHA) of the MERIT 
topography using the technique and software by Rexer and Hirt (2015).  In brief, the 3” MERIT 
heights were block-averaged to 15” resolution (using 5 x 5 block means) and subsequently analysed 
to ultra-high spherical harmonic degree 𝑁𝑁 =  43,200, from which we use the coefficients with 𝑛𝑛 ≤
𝑁𝑁 =  2,160 only.  It was found that ultra-high degree SHA was required to reduce the effect of 
aliasing (on the estimated coefficients 𝑛𝑛 ≤ 𝑁𝑁 = 2,160) well below the sub-meter-level (cf. Hirt et al. 
2019).   

The coefficients 𝐻𝐻�𝑛𝑛𝑛𝑛 were used to define the input topographic mass model for the spectral-domain 
forward modelling (S1.2) and to define the SH reference topography in the RTM forward modelling 
(S1.3). For the latter case, reference topographic heights 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅(𝜑𝜑, 𝜆𝜆) were synthesized in the spatial 
domain with Eq. (3) and 𝑁𝑁 =  2,160. 

S1.2 Spectral-domain gravity forward modelling 

Spectral-domain gravity forward modelling (e.g., Rummel et al. 1988, Chao and Rubincam 1989, 
Balmino et al. 2012, Hirt and Kuhn 2014; Hirt et al. 2016) involves a) the expansion of the 
topographic potential implied by the reference topography into integer powers 𝑝𝑝 of 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 (S1.2.1), 
and b) SH synthesis of gravity effects in the space domain (S1.2.2). 

S1.2.1 Generation of topographic potential coefficients 

In spherical approximation, the topographic potential coefficients 𝑉𝑉𝑛𝑛𝑛𝑛 implied by the reference 
topography 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 are obtained as function of the 𝐻𝐻𝑛𝑛𝑛𝑛

(𝑝𝑝) coefficients (after Chao and Rubincam 1989) 

𝑉𝑉𝑛𝑛𝑛𝑛 =
4𝜋𝜋𝑅𝑅3𝜌𝜌

(2𝑛𝑛 + 1)𝑀𝑀
 �

∏ (𝑛𝑛 − 𝑖𝑖 + 4)𝑝𝑝
𝑖𝑖=1
𝑝𝑝! (𝑛𝑛 + 3)

𝐻𝐻𝑛𝑛𝑛𝑛
(𝑝𝑝)
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 (4) 

where 𝑉𝑉𝑛𝑛𝑛𝑛 =  (𝐶𝐶𝑛̅𝑛𝑛𝑛,𝑆𝑆𝑛̅𝑛𝑛𝑛) are the potential SHCs evaluated to 𝑘𝑘𝑘𝑘 with 1 ≤ 𝑘𝑘 ≤ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑘𝑘𝑘𝑘 ∈ ℕ,  
𝐻𝐻𝑛𝑛𝑛𝑛

(𝑝𝑝) are the SH coefficients of the topographic height function 𝐻𝐻(𝑝𝑝) ≔ (𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅/𝑅𝑅)𝑝𝑝 obtained via SHA, 
𝑅𝑅 = 6378,137 m as model reference radius and 𝑀𝑀 =  5.972 × 1024 kg is Earth’s total mass.  

In our work, we used 𝑁𝑁 = 2,160, powers 1 ≤ 𝑝𝑝 ≤ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 = 40, and 𝑘𝑘 = 5. It is well known that 
raising 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅/𝑅𝑅 to integer power 𝑝𝑝 gives rise to additional short-scale signals with spectral energy in 
band of degrees 𝑁𝑁 + 1 to 𝑝𝑝𝑝𝑝 (cf. Balmino 1994, Freeden and Schneider 1998, Hirt and Kuhn 2014) 
which must be taken into account to completely model the gravitational field of 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 up to ultra-
high degrees. In our work, we model the gravity field implied by the 𝑁𝑁 = 2,160 reference 
topography up to ultra-high degree 𝑘𝑘𝑘𝑘 = 10,800  over mountainous terrain and to degree 6,840 
over the rest of the globe. Fig. S1 shows the spectral power (using degree variances as a measure for 
degree signal strengths of the MERIT topographic potential model) as function of the SH degree 𝑛𝑛.  

The bulk of spectral energy is contained in spectral band of degrees 0 ≤ 𝑛𝑛 ≤ 2,160. In the spatial 
domain, gravity signals in this spectral band can reach several 100 mGal of amplitude. Topography-



implied gravity signals in spherical harmonic band of degrees 2,160 ≤ 𝑛𝑛 ≤ 10,800 can reach 
amplitudes of ~10 mGal or more over mountainous terrain (Hirt et al. 2016), so are taken into 
account here to improve the quality of the SRTM2gravity model. For more details and a justification 
of the chosen parameters, we refer to Hirt et al. (2016). 

 

Fig. S1. Dimensionless degree variances of the gravitational potential implied by the MERIT topography. Blue 
curve: degree variances for the band-width of the input topography (0 ≤ 𝑛𝑛 ≤ 2,160); orange curve: degree 
variances associated with the short-scale gravity signals (2,161 ≤ 𝑛𝑛 ≤ 10,800). 

S1.2.2 Spherical harmonic syntheses 

For the spherical harmonic synthesis (SHS) of gravity effects we use the spherical harmonic series 
(e.g.,Torge and Müller 2012) 

𝛿𝛿𝛿𝛿𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁..𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
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where the evaluation point (𝑟𝑟 = 𝑅𝑅 + 𝐻𝐻,𝜑𝜑, 𝜆𝜆) resides at the surface of the 3” MERIT topography 
model, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is the lower harmonic degree and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 the upper harmonic degree of evaluation.  
Given the necessity to synthesize gravity at ~27.9 billion points with varying topography heights, 
classical point-by-point evaluation techniques for Eq. (5) would lead to unacceptably large 
computation times (cf. Hirt 2012). Assuming a computational speed of 1 s per point for point-wise 
evaluation of Eq. (5) to ultra-high degree of 10,800, the total computational effort would be on the 
order of ~5 million CPU hours. 

For a much more efficient evaluation of Eq. (5), so-called 3D-SHS techniques based on gradient 
continuation are very well suitable, as described in Holmes (2003), Balmino et al. (2012), Hirt (2012) 
and implemented in the isGrafLab software by Bucha and Janak (2014).  The idea behind the 3D-SHS 



technique is to accurately approximate 𝛿𝛿𝛿𝛿0..𝑁𝑁𝑁𝑁𝑎𝑎𝑥𝑥
𝑆𝑆𝑆𝑆𝑆𝑆  via a Taylor series that up- or downward-continues 

gravity effects with 1st, 2nd, … q-th order radial derivatives computed highly efficiently at some 
constant reference height (e.g., Bucha and Janak 2014). By choosing the order q of Taylor series 
expansion large enough, approximation errors can be reduced to the microGal-level (1 𝜇𝜇Gal = 10-3 
mGal = 10 nm s-2) or even well below, so become negligible. The adoption of 3D-SHS techniques 
reduces the computation effort associated with the gravity synthesis for ~27.9 billion points to few 
10,000 CPU hours (or less than 1% of the time needed for point-by-point syntheses). 

For the SRTM2gravity model generation, we evaluated Eq. (5) in terms of 19,404 1° tiles, each 
containing 1200 x 1200 MERIT terrain elevations at 3” spatial resolution.  For each tile, its mean 
elevation is used as constant reference height where gravity values and the radial derivatives are 
computed. This strategy reduces the radial distances, over which the gravity values are continued, 
and thus accelerates the convergence of the Taylor series (cf. Hirt 2012, Bucha and Janak 2014). 

For the selection of the computational parameters in ultra-high degree 3D-SHS, there are some 
important aspects to be taken into account: 

(1) A band-limited topographic mass model (in our case 0 ≤ 𝑛𝑛 ≤ 2,160) generates a full-scale 
gravitational field, with high-frequency signals occurring with associated degrees 𝑛𝑛 > 2,160  
(cf. Hirt and Kuhn 2014), also see Fig. S1.  These high-frequency signals can even exceed the 
10 mGal level, so must be considered for accurate modelling. 
 

(2) Luckily, in case of a degree-2160 topographic reference model, the bulk of high-frequency 
signals is contained in the spectral band 2161 ≤ 𝑛𝑛 ≤ 6,840 over flat areas and 2161 ≤ 𝑛𝑛 ≤
10,800 over mountainous areas (e.g., Hirt et al. 2016), such that extremely high-resolution 
and costly spectral modelling (e.g., to multiples of degree 10,800) can be avoided. 
 

(3) Nonetheless there is always the effect of omitted signals because we cannot model the high-
frequency signal to infinity.  From Hirt et al. (2016, Table 2 ibid), for 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 10,800, this 
effect can be constrained to be globally at the 5 𝜇𝜇Gal RMS level and maximum error 
amplitudes will rarely reach ~1-2 mGal. 
 

(4) The 3D SHS computation times increase about quadratically with the maximum harmonic 
degree 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 of evaluation, and linearly with the order 𝑞𝑞 of the Taylor series.  The required 
order 𝑞𝑞 increases with 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and the roughness of the topography (cf. Hirt 2012, Balmino 
2012, Hirt et al. 2016) to keep approximation errors small. 

For these reasons, it is necessary to balance computational costs versus the desired quality of the 
modelling, by choosing 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 not as high as possible, but instead as low as required to make 
approximation and omission errors sufficiently small.  For efficient ultra-high degree 3D SHS, the 
topography of all 19,404 1° tiles was classified as mountainous or other (e.g., flat or undulating) 
terrain.  In case of mountainous terrain, the RMS (root-mean-square) of the heights exceeds a value 
of 1200 m, or the elevation range (that is, maximum minus minimum value) exceeds 5000 m. Thus, 
the class “mountainous” contains tiles containing extremely steep or rugged mountain topography, 
as found, e.g., over parts of the Himalayas, Rocky Mountains, but also highly elevated terrain (e.g., 
parts of Africa or the Andes). Depending on the classification of the individual tiles, Taylor series of 
varying order 𝑞𝑞 were applied (see Table S1) as trade-off between computation times and 
approximation errors. Approximation errors associated with the chosen 𝑞𝑞-values are at the RMS level 
of few µGal, and do not exceed amplitudes of 0.01 mGal. This was assessed with higher-order Taylor 
series expansions with 𝑞𝑞=30 over a test area located in the Himalaya Mountains. The geographic 
distribution of tiles with classification as flat or rough is shown in Fig. S2. 

 



 

Table S1. Parameters q and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 used in the synthesis of the long-wavelength gravity signal 𝑛𝑛 ≤ 2160 and 
short-scale gravity signal (𝑛𝑛 > 2160) implied by the 2,160 reference topography 

 
Tile classified 

as 

 
Number of 

# 1°x 1° tiles 

Long-wavelength gravity signal  
of the reference topography 

High-frequency gravity signal 
of the reference topography 

Spectral band Order q Spectral band Order q 
Mountainous 2,508 0 ≤ 𝑛𝑛 ≤ 2160 10 2161 ≤ 𝑛𝑛 ≤ 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =10,800 
22 

Other (flat, 
undulating, …) 

16,804 0 ≤ 𝑛𝑛 ≤ 2160 7 2161 ≤ 𝑛𝑛 ≤ 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 6,840 

10 

 

 

Fig. S2. Geographic distribution of 1° tiles of the SRTM2gravity model and their terrain type classification for 
the 3D SHS. Red: classified as mountainous (#2,508 tiles; 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  10,800 used in the synthesis); green: other 
tiles not classified as mountainous (#16,894;  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  6,840 used in the synthesis). Blue: tiles without 
synthesized gravity values (the open global ocean areas within -60° to 90° latitude). 

 

With the chosen spectral band-widths for the high-frequency gravity signals (2161 ≤ 𝑛𝑛 ≤ 6,840 over 
flat areas and 2161 ≤ 𝑛𝑛 ≤ 10,800 over rough areas), the majority of the high-frequency signals 
generated by the 𝑁𝑁 = 2160 topographic mass model is very well represented, and the required 
computation times are kept relatively small.  From Hirt et al. (2016), the amplitudes of omitted 
signals with associated harmonic degrees 𝑛𝑛 > 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  6,840 rarely reach few 0.1 mGal over flat 
areas, and those over rough topography and 𝑛𝑛 > 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  10,800 very rarely exceed 1-2 mGal.  A 
further increase in computational effort (e.g., higher values for 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑞𝑞) would not justify the 
gain in accuracy. 

As result of the 3D-SHS computations, we obtained the long-wavelength signal 𝛿𝛿𝛿𝛿0..2160
𝑆𝑆𝑆𝑆𝑆𝑆   and short-

wavelength signal 𝛿𝛿𝛿𝛿2161..𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑆𝑆𝑀𝑀   of the reference topography (Eq. 3), evaluated at the 3” MERIT 

topographic surface.  Its sum   

 𝛿𝛿𝛿𝛿𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 ≈ 𝛿𝛿𝛿𝛿0..2160
𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛿𝛿𝛿𝛿2161..𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑆𝑆𝑆𝑆𝑆𝑆     
                                   (6a) 



closely approximates the gravity signal implied by the reference topographic mass model (𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅, 𝜌𝜌) 
as would be obtained through a global evaluation of Newton’s integral in the spatial domain 

 𝛿𝛿𝛿𝛿𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐺𝐺𝜌𝜌 � � �
𝑟𝑟𝑄𝑄2(𝑟𝑟 − 𝑟𝑟𝑄𝑄  cos𝜓𝜓)
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𝑑𝑑𝑟𝑟𝑄𝑄 𝑑𝑑𝛼𝛼 sin𝜓𝜓𝑑𝑑𝑑𝑑
𝜋𝜋

𝜓𝜓=0

,                               (6b) 

see the numerical study by Hirt et al. (2016) for full details. From Hirt et al. (2016, Table 2 ibid), 
remaining approximation errors – as associated with the choice of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑞𝑞 − can be constrained 
to be at the 5 𝜇𝜇Gal RMS level and maximum error amplitudes will rarely reach ~1-2 mGal. 

S1.3 Spatial domain residual gravity forward modelling (RTM) 

For the computation of the high-frequency gravity signal 𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅𝑅𝑅 we apply residual terrain modelling 
(RTM; cf. Forsberg and Tscherning 1981; Forsberg 1984). A residual terrain model, bounded by 
heights 𝐻𝐻 of the 3” MERIT topography, and reference heights 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 (cf. Eq. 3) of the 𝑁𝑁 = 2160 SH 
expansion of the MERIT topography, together with the mass-density 𝜌𝜌, is the topographic mass 
model used as input. The RTM integral to be evaluated reads in spherical approximation (cf. Hirt et 
al. 2019) 

𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐺𝐺𝜌𝜌 � � �
𝑟𝑟𝑄𝑄2(𝑟𝑟 − 𝑟𝑟𝑄𝑄  cos𝜓𝜓)

𝑙𝑙3

𝑅𝑅+𝐻𝐻
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2𝜋𝜋

𝛼𝛼=0
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where the variables are the same as in Eq. (1). As the decided benefit of the RTM technique for our 
work, the global integration radius (180° in angular degrees, or 𝜋𝜋 in radians) in Eq. (7a) can be 
replaced by some local integration radius 𝜓𝜓0 defining a spherical cap around the computation point 
(Eq. 7b). By limiting the integration domain to, e.g.,  𝜓𝜓0 =0.4° (Eq. 7b), the number of mass elements 
to be considered in the numerical integration is significantly reduced, and the computational 
efficiency increases compared to a global numerical integration (as in Eq. 1). Because topographic 
heights 𝐻𝐻 − 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 oscillate between positive and negative values outside the integration radius, their 
effect on the computed gravity value 𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅𝑅𝑅 largely cancels out (cf. Forsberg 1984). 

For the discretisation of the RTM integral (Eq. 7b), TUM in-house software (Yang et al. 2018) is used 
based on a combination of polyhedra (in the near-zone up to 0.015° around the computation point), 
prisms (from 0.015° to 0.025° spherical distance), tesseroids (from 0.025° to 0.06°) and point-masses 
(from 0.06° to 𝜓𝜓0 = 0.4°). 3” MERIT DEM data is used up to a spherical distance of 0.06°, and block 
average values (30”) up to a distance of 𝜓𝜓0 = 0.4°. A rotation of the gravitational attraction 
components from the topocentric coordinate system aligned with the polyhedral/prisms edges to 
the topocentric coordinate system at the computation point has been performed (cf. Heck and Seitz 
2007).  

Our specific selection of RTM computation parameters (value 𝜓𝜓0, grid resolutions and radii used for 
switching between different mass-elements) was primarily driven by the necessity to reduce the 
number of mass elements (and thus the mathematical operations) in the numerical integration such 
that a target computational speed of ~7 computation points per second could be achieved. Such a 
performance is required to complete the SRTM2gravity forward modelling at ~27.9 billion 



computation points within the available budget class of ~1 million CPU hours.  Approximation errors 
associated with the chosen integration parameters have been found to be below the RMS level of 
~0.1 mGal, which is considered here as well acceptable for the quality of the SRTM2gravity 
modelling. 

For computation points located inside the reference topography (that is, when the computation 
point height 𝐻𝐻 <𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅), it is well known that the gravitational potential is non-harmonic (Forsberg 
and Tscherning 1981) and not suited to describe the external gravitation field. This issue is solved in 
approximation in SRTM2gravity by applying the so-called harmonic correction (Forsberg and 
Tscherning 1981) 

ℎ𝑐𝑐 ≈ 4𝜋𝜋𝜋𝜋𝜌𝜌𝐻𝐻𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅,   𝐻𝐻𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 < 0 (8) 

 
that corresponds to a mass condensation using double Bouguer reduction of planar plate thickness 
𝐻𝐻𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐻𝐻 − 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅.   Approximation errors associated with Eq. (8) have been characterized and 
quantified by Hirt et al. (2019), and corroborated in our validation experiments (Sect. S3) as follows: 

• Points with 𝐻𝐻 ≥ 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 (that is, 𝐻𝐻𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 ≥ 0) are always unaffected by the harmonic correction 
approximation errors because Eq. (8) is not applied. 
 

• Approximation errors for points with 𝐻𝐻𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 < 0 were constrained not to exceed a value of 
~0.012𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚
⋅ 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 (Hirt et al. 2019). As a worst case example, over deep valleys of the 

Himalayas, 𝐻𝐻𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 ≈  −1000 m errors reach amplitudes of ~12 mGal in extreme cases. 

The role of harmonic correction approximation errors for the error budget of the SRTM2gravity 
values is further discussed in Sect. S3. 

S2 Supercomputer use 

Given the demanding computational requirements for gravity forward modelling with local 
resolution and global coverage, the use of some supercomputing platform is inevitable. For the 
SRTM2gravity project, advanced computational resources were made available through the Leibniz 
Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences (www.lrz.de). We used the 
Haswell island of the LRZ’s SuperMUC Petascale Computing System. This system consists of a total of 
86,016 Central Processing Units (CPUs) arranged in terms of 3,072 nodes. The 28 CPUs of each 
Haswell node share 64 GB per node (~2.1 GB available per CPU on average) and were operated at a 
frequency of 1.8 GHz during our computations. 

The SRTM2gravity computational exercise was subdivided into 1° x 1° geographical tiles, each 
containing 1200 x 1200 computation points at 3” spatial resolution. Within the MERIT data area from 
-60° to 90° latitude, there are 19,402 tiles with one or more land points, out of which 14,476 extend 
over the SRTM data area from -58° to +60° latitude, and another 4,926 tiles are located in Arctic 
regions (+60° to 85° latitude)  For each tile, three computation runs were carried out: 

• SH synthesis of gravity effects implied by the degree-2,160 MERIT topography at the 3” 
MERIT topographic surface in band 0 ≤ 𝑛𝑛 ≤ 2,160 

• SH synthesis of high-frequency (HF) gravity effects implied by the degree-2,160 MERIT 
topography at the 3” MERIT topographic surface  

 in band 2161 ≤ 𝑛𝑛 ≤ 10,800 (over mountainous topography) or  
 in band 2161 ≤ 𝑛𝑛 ≤ 6,480 (elsewhere, cf. Fig. S2 for the classification). 

• Forward modelling of high-frequency gravity effects in the spatial domain using the RTM 
technique and 0.4° integration caps around each computation point. 

http://www.lrz.de/


Table S2 reports the run-times per computation run type and tile, and resulting computation times. 

Table S2.  Number of tiles, measured computation times for the three kinds of computations (SGM = synthesis 
in band 0 to 2160, HF = synthesis in band 2161-6840/10800 and RTM = residual terrain modelling).   

Terrain type  Measured run 
times per tile (h) 

Required CPU hours (h) 

Terrain type # Tiles SGM HF RTM           SGM HF RTM Total 
Mountainous 2,508 0.4 5.5 57.5 1,045 11,286 142,956  155,287 
Other 16,894 0.4 1.5 57.5 7,039 25,341 962,958 995,338 
Total 19,402    8,804 36,627 1,105,914 1,150,625 

 

S3 Validation experiments 

For validation of the SRTM2gravity modelling technique described in Sect. S1, we have evaluated 
Newton’s integral (Eq. 1) over selected test areas through a full-scale global numerical integration in 
the spatial domain.  These experiments use the same 3” MERIT topographic mass model, and 
identical numerical values for constants 𝜌𝜌, 𝑅𝑅 and 𝐺𝐺, but do not involve any spectral-domain 
calculations, do not use SH reference surfaces (Sect. S1.2), nor residual terrain modelling (Sect. S.1.3). 
As such, the global numerical integration provides a check on the SRTM2gravity calculations with 
fully independent methodology.   

We have defined six 2° x 2° test areas around the globe as follows (cf. Table S3 and Fig. S3) 

• Himalyas (including the Southern flanks and the Mount Everest summit, as example of 
extremely rugged topography with an elevation range of ~8000 m), 

• Switzerland (as example for an Alpine region with an elevation range of ~4000 m and short-
scale terrain variations of ±2000 m), 

•  Canada (covering parts of the Rocky Mountains, including high-latitudes up to 60° and land-
sea transitions, elevation range ~4500 m), 

• South America (covering parts of the Andes Plateau with an elevation range of ~5000 m) 
• Indonesia (covering several land-sea transitions; straddles the equator to test the software, 

elevation range ~2500 m), 
• Australian Alps (most elevated part of Australia, but on a global scale rather smooth terrain, 

second area on the Southern Hemisphere, elevation range ~2000 m). 

The test areas generally focus on mountainous or extremely mountainous terrain where forward 
modelling errors can be expected to be the largest.  Further, they cover landmass of the Northern 
and Southern, Eastern and Western hemispheres to provide spot-checks on SRTM2gravity around 
the globe. 

To evaluate Newton’s integral (Eq. 1) in the spatial domain, Curtin’s in-house software (e.g. Kuhn and 
Hirt 2016) has been used based on tesseroids approximated by mass-equal prisms (up to 6° around 
the computation point) and tesseroids to cover the whole globe (𝜓𝜓0 = 𝜋𝜋 ).  The software performs a 
truly-global numerical integration of mass-density effects. It has been tested to provide topographic 
gravity at a precision level well below 0.1 mGal (e.g., Hirt and Kuhn 2014, Kuhn and Hirt 2016, Hirt et 
al. 2016) thus being suitable to be used for validation.  In order to reduce computation time, 
cascading grid resolutions have been used with 3” in the near vicinity around the computation point 
(up to an extension of 20’) and coarser resolutions farther away, e.g. 15”, 1’, 3’ and 15’ with 
respective radii of 2°, 6°, 15° and global.  The cascades have been empirically selected so that 
approximation errors remain at most at the µGal level.  Based on this configuration and using 
advanced computational resources provided by Pawsey’s Supercomputing Centre 



(www.pawsey.org.au) a computation speed of ~2.5 s per point could be achieved requiring ~24,000 
CPU hours to provide the reference solutions over the six selected validation areas.   

 

 

Fig.S3. Location of the six test areas around the globe 

Tab. S3. Test areas and geographic boundaries in degrees. Each area contains 5,760,000 (=2,400 x 2,400) 
computation points at 3” resolution in cell-centred grid node registration. 

Area name Minimum 
Longitude 

Maximum 
Longitude 

Minimum 
Latitude 

Maximum 
Latitude 

Himalayas  86 88 27 29 
Switzerland (European Alps) 7 9 45 47 
Canada (Rocky Mountains) -138 -136 58 60 
South America (Andes) -70 -68 -28 -26 
Indonesia (Islands) 119 121 -1 1 
Australia (Australian Alps) 147 149 -37 -35 

 

Tab. S4.  Descriptive statistics of the differences between gravimetric terrain corrections from full-scale 
numerical integration and SRTM2gravity, as released to the public. Over each 2° x 2° area, 5,760,000 values 
were compared. All values in mGal 

Area name Minimum Maximum Mean RMS 
Himalayas  -6.60 12.06 0.02 0.75 
Switzerland (European Alps) -9.60 7.34 -0.09 0.57 
Canada (Rocky Mountains) -5.05 9.12 -0.08 0.46 
South America (Andes) -4.75 8.12 -0.03 0.17 
Indonesia (Islands) -3.18 3.34 -0.02 0.14 
Australia (Australian Alps) -6.53 11.41 -0.05 0.11 

 

 

 

http://www.pawsey.org.au/


 

Fig. S4. Results of the validation experiment over the Himalaya test area 

 

Fig. S5. Results of the validation experiment over the test area Switzerland 



 

Fig. S6. Results of the validation experiment over the test area Rocky Mountains 

 

Fig. S7. Results of the validation experiment over the test area Andes Mountains 



 

Fig. S8. Results of the validation experiment over the test area Indonesia 

 

Fig. S9. Results of the validation experiment over the test area Australian Alps 



For the six test areas, Figs. S4 to S9 show data and results of the validation experiments. Each figure 
shows the MERIT topography in metres (top left), the residual MERIT topography to exemplify the 
terrain variations in the RTM forward modelling (top right), the SRTM2gravity gravimetric terrain 
correction in mGal (bottom left) and the differences between the full-scale global numerical 
integration (not shown) and SRTM2gravity gravimetric terrain corrections in mGal (bottom right). 

From Figs. S4 to S9 and Table S4, the root-mean-square (RMS) agreement between SRTM2gravity 
and the reference solution is always better than the 1 mGal level over any of the six test areas. The 
RMS values are largest for the Himalaya area (0.75 mGal), followed by the European Alps and Canada 
(0.57 and 0.46 mGal).  Over the Andes and Indonesian Islands, the RMS agreement is better than 0.2 
mGal, and over the Australian Alps as a moderately rugged area, the validation experiment shows an 
excellent RMS agreement at the level of ~0.1 mGal.  

Given that more than 90 % of the 19,404 1°x1° tiles of the SRTM2gravity model feature smoother 
topography than that of the Australian Alps (using the elevation range across the tile as criterion), we 
consider the ~0.1-~0.2 mGal level representative for wide parts of Earth’s land areas, as shown in 
green in Fig. S10. Opposed to this, larger RMS errors at the 0.5 mGal level are to be expected for 
Alpine terrain (elevation variation between 2.2 and 5 km) and ~0.7-~0.8 mGal over extremely rugged 
terrain (elevation variation larger than 5 km). Note that the classification of terrain according to 
elevation range was made in an attempt to generalize the results of the six validation experiments to 
the SRTM2gravity data area. 

 

Fig. S10. Accuracy classes assigned to all 1°x1° tiles based on the elevation range across the tile and results 
from the validation experiments.  Green:  accuracy of ~0.1 to ~0.2 mGal (for tiles with terrain similar or 
smoother than that of the Australian Alps), orange: accuracy of ~0.5 to ~0.6 mGal (for tiles with terrain similar 
to that of the European Alps, dark red: accuracy of ~0.7 to ~0.8 mGal (for tiles with elevation variability larger 
than 5 km). 

Note that errors at individual SRTM2gravity computation points are largest where residual terrain 
heights (cf. Figs S4-S9, top right) are strongly negative. This is related to the approximative character 
of the harmonic correction that was applied in the RTM forward modelling at all computation points 
located inside the long-wavelength reference topography.  These approximation errors tend to 
increase with the negative RTM elevation, i.e., can be largest in deep and narrow mountain valleys. 
From Hirt et al. (2019), maximum amplitudes of approximation errors associated the harmonic 
correction were constrained to ~0.012 mGal/ m. For instance, with -1000 m RTM elevation, the 



amplitude of the approximation error can reach ~12 mGal in the worst case, but are mostly smaller 
(see Figs. S4-S9 and Table S2).  Over the entire model data area (Fig. 1 in the manuscript), there are 
less than 0.005 % of computation points with RTM elevations of smaller than -1000 m, and less than 
1 % of computation points with RTM elevations of smaller than -300 m (cf. Fig. S11). Therefore, the 
approximation errors associated with the harmonic correction play a minor role for the overall model 
quality. We note that points with positive RTM elevation (of arbitrary amplitude) are unaffected by 
this kind of approximation error, and residuals are always at the RMS-level of 0.1-0.2 mGal. While it 
is important to be aware of the somewhat reduced quality of SRTM2gravity over deep and narrow 
valleys, an error level of ~0.1-0.2 mGal can be expected over ~95 % Earth’s land areas. The overall 
accuracy target for the SRTM2gravity terrain corrections of ~1mGal has been fully reached or 
exceeded. 

 

Fig. S11. Cumulative distribution of 27,938,880,000 RTM heights within the SRTM2gravity data area. 

S4 Comparison with ground-truth data 

For additional validation of the SRTM2gravity model, we also use ground-truth gravity data sets from 
terrestrial gravimetry over four countries or regions: Switzerland, Bavaria, Slovakia and Australia. The 
specifications of the four data sets are summarized in Table S4. While the validation of the full-scale 
SRTM2gravity product is rather difficult with ground-truth data (the differences show the Bouguer 
gravity signal, also see Fig. 2 in the manuscript), the residual (short-scale or RTM) gravity component 
of the SRTM2gravity model can be used to augment a global geopotential model (GGM) such as 
EGM2008 at short spatial scales. A similar principle was already applied in the development of 
GGMplus (Hirt et al. 2013), where gravity from a degree-2190 spherical harmonic GGM, based on 
GRACE and GOCE and EGM2008 data, was augmented with short-scale gravity information from 
forward modelling (released as the ERTM2160 model, cf. Hirt et al. 2014) and compared with ground-
truth data sets.  The following procedure to compare ground-truth gravity data with modelled gravity 
values was followed: 



(1) Calculation of gravity implied by the GRS80 normal gravity field at the 3D location of the 
gravity station (as defined through geodetic latitude, longitude and the ellipsoidal height). 

(2) Subtraction of the normal gravity (1) from the gravity observation, the result are gravity 
disturbances (radial derivatives of the disturbing potential) 

(3) Comparison of the “observed” gravity disturbances from (2) with modelled values obtained 
by bi-cubic interpolation at the gravity station using the following models 
(a) GGMplus,  
(b) GGMplus minus ERTM2160 plus residual SRTM2gravity. 

In the second case, the short-scale forward-modelled gravity value of GGMplus is effectively replaced 
with the SRTM2gravity residual component. For each of the ground-truth data sets, Table S5 reports 
the descriptive statistics of the comparison between observed and modelled gravity disturbances. 
The RMS (root-mean-square) agreement is found to be at the level of ~2 mGal for the Bavarian data 
set, ~4 mGal for the Swiss data set and ~3 mGal for the Australian and Slovakian gravity data. 
Comparing the two model variants (a) and (b), the agreement is comparable or slightly better when 
the SRTM2gravity model is used. This result is within the expectation, given the (i) higher spatial 
resolution of the SRTM2gravity modelling (3” vs. 7.2” in ERTM2160), (ii), the use of bare-ground 
elevations in SRTM2gravity and the consideration of the high-frequency RTM correction in 
SRTM2gravity (Table S1). 

Table S4. Summary of ground-truth data sets used for comparisons with SRTM2gravity 

Country or region Boundary of data area 
Latitude      Longitude 

Number of 
stations 

Data provider or data set reference 

Bavaria 47°-51°           9°-14°  17,586 Landesamt für Digitalisierung, 
Breitband und Vermessung (LDBV), 
Dipl.-Ing. Franz Lindenthal 

Switzerland 45.5-48°        5.5°-11° 31,598 Swisstopo, Dr Urs Marti 
Australia -45°- -8°      115°-155° 1,624,972 Geoscience Australia, National 

Gravity Data Base (NGDB) 
Slovakia 47.5- 50°      16.5°-23° 319,047 Zahorec et al. (2017) 

 
Table S5. Descriptive statistics of the differences between ground-truth gravity disturbances and modelled 
gravity disturbances. Unit in mGal. 

Area name (a) Ground-truth minus GGMplus (b) Ground-truth minus (GGMplus –
ERTM2160 + residual SRTM2gravity) 

Area name Minimum Maximum Mean RMS Minimum Maximum Mean RMS 
Bavaria -15.3 12.5 -0.6 2.09 -18.5 12.4 -0.9 1.99 
Switzerland  -91.2 28.7 -0.6 4.41 -27.1 23.3 -1.3 4.26 
Australia 193.1 81.1 -0.7 2.90 -193.2 79.0 -0.7 2.88 
Slovakia -30.9 32.7 -0.3 2.93 -30.3 21.7 0.3 2.77 
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